Gravitational Potential Energy Calculator

Calculate the potential energy of objects in gravitational fields with our physics-based calculator

Object Properties

Calculation Results

Gravitational Potential Energy
--
Joules (J)
Equivalent Energy
--
--
Work Needed
--
Joules (J)

Enter values to see how this energy compares to real-world examples.

Energy Breakdown

Your detailed energy analysis will appear here.

🌍 Planetary Gravitational Data

Celestial Body Gravity (m/s²) Escape Velocity (km/s) Potential Energy for 1kg at 100m (J)
Sun 274.0 617.6 27,400
Jupiter 24.79 59.5 2,479
Earth 9.807 11.2 980.7
Mars 3.71 5.0 371
Moon 1.62 2.4 162
Pluto 0.62 1.2 62

Note: Values are approximate and vary by location on the celestial body.

📚 Physics Concepts & Tips

🔭

Understanding GPE

Gravitational potential energy (GPE) is the energy an object possesses due to its position in a gravitational field.

📝

Key Formula

GPE = m × g × h, where m is mass, g is gravitational acceleration, and h is height above reference point.

⚖️

Reference Points

The choice of reference point (h=0) is arbitrary but affects the calculated potential energy value.

🌌

Universal Gravity

For large distances, use Newton's Law: U = -G×m₁×m₂/r, where G is the gravitational constant.

🔄

Energy Conservation

GPE can convert to kinetic energy as objects fall, with total mechanical energy remaining constant.

🚀

Escape Velocity

The energy needed to escape a planet's gravity is ½mv² where v is the escape velocity.

Dark Mode

Note: This calculator uses standard gravitational potential energy formulas (U = mgh for near-surface calculations). For astronomical distances, more complex formulas accounting for varying gravity should be used.