F Critical Value Calculator

Calculate critical values for the F-distribution to determine statistical significance in ANOVA and regression analysis

Degrees of Freedom

Between-group variability (typically number of groups - 1)
Within-group variability (typically total observations - number of groups)

Significance Level (α)

F Distribution Results

Numerator df (df₁)
--
Denominator df (df₂)
--
Significance Level (α)
--
F Critical Value
--

Enter your parameters to calculate the F critical value for your hypothesis test.

F Distribution Visualization

F Distribution (df₁, df₂)
Critical Region (α = --)

📊 Common F Critical Values

df₁\df₂ 1 2 3 4 5 10 20 30 50 100
1 161.45 199.50 215.71 224.58 230.16 241.88 248.01 250.10 251.77 253.04 254.31
2 18.51 19.00 19.16 19.25 19.30 19.40 19.45 19.46 19.48 19.49 19.50
3 10.13 9.55 9.28 9.12 9.01 8.79 8.66 8.62 8.58 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 5.96 5.80 5.75 5.70 5.66 5.63
5 6.61 5.79 5.41 5.19 5.05 4.74 4.56 4.50 4.44 4.41 4.37
10 4.96 4.10 3.71 3.48 3.33 2.98 2.77 2.70 2.64 2.59 2.54
20 4.35 3.49 3.10 2.87 2.71 2.35 2.12 2.04 1.97 1.91 1.84
30 4.17 3.32 2.92 2.69 2.53 2.16 1.93 1.84 1.76 1.70 1.62

Note: Values shown are for α = 0.05 (5% significance level)

df₁\df₂ 1 2 3 4 5 10 20 30 50 100
1 4052.18 4999.50 5403.35 5624.58 5763.65 6055.85 6208.73 6256.26 6294.57 6333.84 6365.86
2 98.50 99.00 99.17 99.25 99.30 99.40 99.45 99.47 99.48 99.49 99.50
3 34.12 30.82 29.46 28.71 28.24 26.92 25.99 25.69 25.41 25.19 24.96
4 21.20 18.00 16.69 15.98 15.52 14.17 13.17 12.84 12.53 12.28 12.02
5 16.26 13.27 12.06 11.39 10.97 9.68 8.71 8.38 8.08 7.82 7.56
10 10.04 7.56 6.55 5.99 5.64 4.71 3.86 3.56 3.28 3.03 2.76
20 8.10 5.85 4.94 4.43 4.10 3.23 2.46 2.16 1.88 1.63 1.32
30 7.56 5.39 4.51 4.02 3.70 2.88 2.14 1.84 1.57 1.32 0.99

Note: Values shown are for α = 0.01 (1% significance level)

df₁\df₂ 1 2 3 4 5 10 20 30 50 100
1 405284 499999.5 540379 562500 576405 605621 620907 625764 629626 633145 636619
2 998.50 999.00 999.17 999.25 999.30 999.40 999.45 999.47 999.48 999.49 999.50
3 167.03 148.50 141.11 137.10 134.58 127.35 122.40 120.68 119.08 117.73 116.31
4 74.14 61.25 56.18 53.44 51.71 46.99 43.69 42.47 41.37 40.48 39.52
5 47.18 37.12 33.20 31.09 29.75 26.07 23.20 22.24 21.34 20.58 19.76
10 21.04 14.91 12.55 11.28 10.48 8.59 6.99 6.35 5.77 5.20 4.56
20 14.02 9.44 7.64 6.70 6.10 4.71 3.56 3.10 2.70 2.30 1.83
30 12.22 8.02 6.35 5.51 4.98 3.73 2.70 2.31 1.96 1.62 1.18

Note: Values shown are for α = 0.001 (0.1% significance level)

📚 Understanding F Critical Values

📊

What is an F Critical Value?

The F critical value is the threshold value that your calculated F-statistic must exceed to reject the null hypothesis in ANOVA or regression analysis. It's determined by your chosen significance level (α) and the degrees of freedom for your numerator and denominator.

🔍

When to Use It

F critical values are used in analysis of variance (ANOVA), regression analysis, and other statistical tests comparing variances. They help determine if group means are significantly different or if a regression model explains a significant portion of variance.

📝

How to Interpret

If your calculated F-statistic > F critical value, reject the null hypothesis (significant result). If F-statistic ≤ F critical value, fail to reject the null (not significant). The smaller the α, the larger the critical value needed for significance.

🧮

Degrees of Freedom

df₁ (numerator) typically represents the number of groups minus 1 in ANOVA. df₂ (denominator) represents the total number of observations minus the number of groups. In regression, df₁ is the number of predictors, df₂ is n - predictors - 1.

📉

F Distribution Shape

The F distribution is right-skewed and its shape changes with the degrees of freedom. As df₁ and df₂ increase, the distribution becomes more symmetric and approaches a normal distribution.

⚠️

Common Mistakes

1) Using the wrong degrees of freedom. 2) Misinterpreting the direction of the test (F-tests are always right-tailed). 3) Choosing inappropriate significance levels without justification. 4) Ignoring assumptions like normality and homogeneity of variance.

Dark Mode

Note: This calculator provides critical values for the F-distribution based on standard statistical tables. For extremely large degrees of freedom or unusual significance levels, more precise calculations may be needed. Always verify critical values with statistical software when conducting formal hypothesis tests.